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Abstract: In light of the accuracy of particle swarm optimization-particle filter (PSO-PF) inadequate for multi-robot cooperative 
positioning, the paper presents population density particle swarm optimization-particle filter (PDPSO-PF), which draws 
cooperative co- evolutionary algorithm in ecology into particle swarm optimization. By taking full account of the competitive 
relationship between the environment and particle swarm, through dynamic adjustment of particle swarm densities based on 
Lotka-Volterra competition equations, PDPSO-PF improves particle diversities, speeds up the evolution of the algorithm and 
enhances the effectiveness of prediction for multi-robot positioning. Studies show that PDPSO-PF improves both the convergence 
speed and accuracy, thus is suitable for multi-robot cooperative positioning. 
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1 Introduction  

To facilitate the path planning, navigation, decision-making 
and implementation of tasks, the robots are required to sense 
the environment in advancement and make accurate self-
positioning [1] . Compared to a single robot [2] , multi-robot 
cooperative positioning system enjoys high efficiency, high-
precision, high fault tolerance, and high robustness [3 5]− , etc for 
multi-robot cooperative operations, thus is more suitable for a 
variety of complex tasks. Dieter [6] , by application of Markov 
positioning method, proposed that for detections between one 
robot and another, robot motions, situational awareness 
information, and mutual observation models could be taken 
into account for adjusting positions of each robot, so as to 
achieve multi-robot mutual orientation. However as with no 
regard to the interdependence of detection information, overly 
optimistic estimates on positions might be resulted. Wang 
Ling [7] , by combination of particle filter [8]  and extended 
Kalman filter (EKF), brought up a multi-robot cooperative 
positioning method, which by taking account of the robustness 
and adaptability of particle filter as well as the high efficiency 
and real-time of EKF, makes the robot group members share 
the overall positioning information, thus effectively 
determining self-positions in an unknown environment in spite 
of no accuracies. 

This paper presents an algorithm of population density 
particle swarm optimization-particle filter, which by taking 
full advantage of the accurate positioning capacity among the 
heterogeneous multi-robots and by adoption of population 

densities in to the particle swarm optimization-particle filter 
method, with as well as the dynamic adjustment of particle 
densities, can improve both the positioning accuracy and 
speed of robots. 

The remaining part of the paper is organized as follows: 
Section 2 presents the information on relative observations 
and Section 3 provides an analysis for population density 
particle swarm optimization-particle filter. Comparative 
experiments and results are shown and discussed in Section 4. 
Finally, Section 5 is a conclusion of this research. 

 
2 Access to Information on Relative 
Observations 

In order to achieve mutual positioning of heterogeneous 
robots, the following assumptions are taken herewith [9] : 
 (1) As each robot is equipped with motion sensors, thus 
information can be exchanged between one robot and another. 
 (2) Heterogeneous multi-robots consist with high-level robots 
with great abilities. Such robots are equipped with external 
sensors that can measure the relative distances and directions 
of other robots, which makes it possible for accurate self-
positioning; while low-level robots are configured with 
external sensors that can measure the relative locations. 
 (3) Each robot can detect the other ones with accurate 
identifications. Observation data can be accessed through 
three stages: firstly, the motions of each robot can be sensed 
through internal sensors based on their motion models, 
including moving distances and directions; next, high-level 
robots can directly obtain the relative positions of other nearby 
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accessible robots and convert these positions into their own 
local coordinates for calculations of relative observations; 
finally, the high-level robots convey the observant information 
on relative positions to other robots which, through processing 
such information, thereby calculate the distances and 
directions of all observant robots and robots inaccessible 
relative to themselves. 

Assuming a queue of a number of robots that are engaged in 
explorations [10] , and there is at least one robot can obtain 
accurate localizations. Use ( , , )x y θ= TR  to represent 
positions of robots at some point, and positions of all robots at 
some point can be expressed as 1( , , , )A B BnR R R⋅ ⋅ ⋅ T . The 
relative positions between one robot and another can be 
denoted as: 

2 2( ) ( )Bn

A A Bn A Bn

R
R R R R Rd x x y y= − + −                            

(1) 

arctan Bn ABn

A A

Bn A

R RR
R R

R R

y y
x x

θ θ
 −

= −  − 
                                   

(2) 
Whereas, AR  and BnR  represent positions of high-level and 

lowly-configured robots at a given moment, while Bn

A

R
Rd  

indicates the relative distance from BnR  to AR ; 
ARθ  is the 

direction angle of AR ; Bn

A

R
Rθ  means the direction angle of 

BnR . 
 
3 PDPSO-PF  
3.1 Dynamic Adjustment of Population Densities 

Given a population P , the secular equation between 
population growth and environment as described in ecology 
goes as the following [11] : 

dN K NrN
dt N

− =   
                                                            

(3) 
Whereas, K means environmental load; r represents 
individual growth rate for the population; N  indicates the 

population size; 
K N

N
−

 is the logistic coefficient. 

As can be seen from the formula, logistic coefficient acts on 
the variation of population densities, to the effect of population 
densities tending to environment load. If N K> , logistic 
coefficient is negative, the population density decreases; while 
if N K< , then the logistic coefficient is positive, thus 
population density increases; in case N K= , logistic 
coefficient is 0, then population density remains unchanged. 
 

3.2 Population Density Particle Swarm Optimization-

particle Filter (PDPSO-PF) 

Given a group composed with N  particles, and the Particle 
i  is expressed with an m-dimension vector 

( 1, 2, , )ix i N= ⋅⋅⋅ , so is the flying speeds [12 13]−  of the 

Particle i  which are noted as ( 1, 2, , )iv i N= ⋅⋅⋅ , then the 
updated formula of PDPSO-PF particles are as follows: 

1 1( 1) ( ) ( ( ) ( ))i i i iv t wv t c r p t x t+ = + −      

2 2 ( ( ) ( ))g ic r p t x t+ −                                    

     

(4) 
( 1) ( ) ( 1)i i ix t x t v t+ = + +                                             

(5) 
Whereas: ( ) ( 1, 2, , )ip t i N = ⋅⋅⋅  is the optimal location that is 
accessible currently for Particle i , which is expressed as: 

( ), ( ( 1)) ( ( ))
( 1)

( 1), ( ( 1)) ( ( ))
i i i

i
i i i

p t f x t f p t
p t

x t f x t f p t
      + <

+ =  +   + ≥  
                         

(6) 
( )gp t  is the optimal position of the whole particle group, i.e. 

1 2( ) { ( ), ( ), , ( ) | ( ( ))g N gp t p t p t p t f p t∈ ⋅⋅⋅   

1 2max{ ( ( )), ( ( )), , ( ( ))}}Nf p t f p t f p t= ⋅⋅⋅           
(7) 

Whereas, w  is inertia factor; 1c  and 2c are non-negative 

constants; while 1r  and 2r  are random numbers ranging 

within[0,1] . 

Given n particle swarms ( 1, 2, , )iP i n= ⋅⋅⋅  

with ( 1,2, , )jN i n= ⋅⋅⋅ , PDPSO-PF undergoes evolution and 
cooperative processes in all iterations. Particle swarm 
optimization algorithm [14]  is adopted for evolution process; 
while species population density equation shall be applied for 
calculations of population densities during cooperative process, 
and subsequently sizes of each particle swarm can be adjusted 
based on the calculated particle swarm densities, i.e.  

( 1) ( ) , ( 1, 2, , )i
i i

dNN t N t i n
dt

+ = + = ⋅⋅⋅                   

      

(8) 

In case that the growth rate idN
dt

of particle swarm 

( 1,2, , )iP i n= ⋅⋅⋅ is positive, then through random generation 

of idN
dt

 particles, particle swarm ( 1,2, , )iP i n= ⋅⋅⋅  is added 

to expand particle swarms. 
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In case that the growth rate idN
dt

of particle swarm 

( 1,2, , )iP i n= ⋅⋅⋅ is negative, then particle adaptabilities of the 
particle swarm is calculated, followed by sorting based on 

adaptabilities; the idN
dt

 particles with least adaptabilities are 

deleted, thus shrink the particle swarms. 
As seen from the foregoing, if the density of certain particle 

swarm increases, at least one particle will be produced 
randomly and added into such particle swarm, which improves 
the diversity of such particle swarm, thus optimizes the overall 
layout of particles to certain extent. In case the density of 
particle swarms decreases, at least one particle with the least 
adaptability shall be removed. Such process not only indicates 
the cooperative competition among swarms in the evolution 
process of particle swarms, but also reflects the mutual 
competition process among particles within the particle swarm.  
 

3.3 Calculation steps of PDPSO-PF  

PDPSO-PF algorithm goes as follows: 
(a): Determine the initial parameter values and obtain the 
relative observations from robots to other low-configured 
robots. At the point when 0k = , select N  particles 

0 , 1,...,{ }i i Nx =  from importance functions at the initial 
moment, the importance density function goes like formula (9): 

1 1~ ( | , ) ( | )i i i i i
k k k k k kx q x x z p x x− −=                                  

(9) 
Give the objective function as:  

1 T
3exp{ [( )] ( ) / }t tpred k t tpredf sqrt z z R z z c−= − − ⋅ ⋅ −       (10) 

Whereas, kR represents the measured noise covariance; 3c is 

a constant; tz  means the observation information at t moment; 

tpredz  indicates predictive information at t moment. 
(b): calculation of significant priority 

1 1( | )i i i
t t t tw w p z x− −=      

1
1 1

1

( | ) ( | ) ( | )
( | , )

i i i
i i it t t t
t t t ti i

t t t

p z x p x xw w p z x
q x x z

−
− −

−

= =            

(11) 

 (c): calculation of growth rate 
dN
dt

 of particle swarms 

  1

n

k
k

K N a N
dN rN
dt K

=

− −
=

∑
                                          

(12) 

If 0dN
dt

> , then the randomly generated 
dN
dt

 particles 

are added into the particle swarm; 

If 0dN
dt

< , then calculate the adaptabilities of particles 

within the swarm and sorting them accordingly; remove 
dN
dt

 

particles with the least adaptabilities: 

( 1) ( ) dNN t N t
dt

+ = + .  

 (d): application of iteration by adoption of particle swarm 
optimization formula: 

1 1( 1) ( ) ( ( ) ( ))i i i i
t t t tv t wv t c r p t x t+ = + −   

2 2 ( ( ) ( ))i i
t tc r p t x t+ −                               

       

(13) 
( 1) ( ) ( 1)i i i

t t tx t x t v t+ = + +                          

                      

(14) 

( ), ( ( 1)) ( ( ))
( 1)

( 1), ( ( 1)) ( ( ))

i i i
t t ti

t i i i
t t t

p t f x t f p t
p t

x t f x t f p t

       + <+ = 
+   + ≥  

            (15)              

1 2( ) { ( ), ( ), , ( ) | ( ( ))g Nj gp t p t p t p t f p t∈ ⋅⋅⋅   

1 2max{ ( ( )), ( ( )), , ( ( ))}}Njf p t f p t f p t= ⋅⋅⋅       
(16) 

* 1 2 *{ ( ), ( ), , ( ) | ( )n
g g gp p t p t p t f p∈ ⋅⋅⋅   

1 2max{ ( ( )), ( ( )), , ( ( ))}n
g g gf p t f p t f p t= ⋅⋅⋅           

(17) 
(e): In case *p  meets iteration termination conditions, then the 
algorithm ends; otherwise go on with step (c). 
(f): based on the predicted particle concentration of robots, the 
relative observations between each particle and other lowly-
configured robots, calculate the difference between predictive 
measurement Bn

A

R
Rd∆  and actual observation Bn

A

R
Rθ∆ . 

 (g): calculate the priority properties of optimized particles and 
conduct normalization. 

  
Bn Bn

A A

i
t R R

R R

a bw
d θ

= +
∆ ∆

                                        

(18) 

1
/

N
i i i
t t t

i
w w w

=

=  ∑                                                                (19) 

 (h): status output:      



1

N
i i
t t

i
x w x

=

= ∑                                                                     (20) 

 
4 Simulation Experiment  

The computer to do experiments has an i5-4200U CPU and 
8G memory. The sensor data and the movement measures are 
collected by the robot with odometer and sonar sensor. To 
verify the effectiveness of PDPSO-PF in multi-robot 
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positioning by combination of relative observation 
measurement, PF ， PSO-PF and PDPSO-PF are adopted 
respectively in a 5 5m m× lab environment for experiment 
observations. Parameters applied in the experiment are: 

1 1.5c = ， 2 1.2c = ， 0.7w = ， 100m = . Firstly, use 

robot A and robot 1B and 2B  for uniform linear motions with 

initial orientation angle as 0 , see Figure 1 for the actual 
trajectory and the reference trajectory by application of 
PDPSO-PF. As for the orientation error of robot 1B , see Figure 
3; with robots making uniform curve motions, see the actual 
estimate trajectory and reference trajectory as shown in Figure 
2. Figure 4 indicates the positioning error of 1B . In the figure 
for trajectories, the Trajectory 1, 2 and 3 represent the 
trajectories of 1B , A  and 2B respectively. 
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Figure 1.  True track and estimated track of linear motion  
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Figure 2.  True track and estimated track of broken line motion  
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Figure 3.  Localization 1BR -RMSE of linear motion 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x/m

R
M

S
E

/m

 

 

PF
PSO-PF
PDPSO-PF

 
Figure 4.  Localization 1BR -RMSE of broken line motion 

 

Table 1. comparison of RMSE/m for different algorithm 
 motion mode                         

 

robot PF PSO-PF PDPSO-PF 

 A  0.022 0.014 0.012 

 
linear motion 

1B  0.045 0.025 0.019 

 
2B  0.051 0.040 0.031 

 A  0.023 0.022 0.018 

 
broken line 
motion 1B  0.056 0.044 0.036 
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2B  0.077 0.051 0.044 

 

The experimental results indicate that the positioning 
accuracy of high-level robot A is higher than that of robot B. 
When robot orientation angle changes, the actual estimated 
trajectory would deviate from the reference trajectory, thus 
localization estimate error would be increased; but when the 
orientation angle keeps unchanged, the actual positions of 
robots would be immediately converged, thus positioning error 
decreases. Compared to PSO-PF and PF, the adoption of robot 
corporative localization can significantly increases the 
positioning accuracy with less errors and better agreement with 
tracking trajectories, thus indicating that the algorithm 
presented in this paper can be well applied in robot cooperative 
positioning. 

 
5 Conclusions  

Through an analysis of the deficiencies of PF and PSO-PF 
in multi-robot cooperative localizations, the paper presents a 
new algorithm—population density particle swarm 
optimization-particle filter, which in addition to adopting 
individual adaptability control evolution of particle swarm, 
also draws population densities into particle filter, thus 
improves the overall optimization capabilities and speeds up 
the evolution of algorithm, thereby a highly-accurate 
positioning system comes into being. The final experimental 
data have verified the effectiveness of PDPSO-PF in multi-
robot positioning system. 
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List of abbreviation 

R  positions of robots 

AR  positions of high-level robots 
BnR  positions of lowly-configured robot 

Bn

A

R
Rd  relative distance 

ARθ  direction angle of AR  
Bn

A

R
Rθ  direction angle of BnR . 

Bn

A

R
Rθ  direction angle of BnR . 

K  environmental load 
r  individual growth rate 
N  population size 

ix  position of particle 

iv  flying speed 

( )ip t  optimal location of particle i  

( )gp t  optimal position of the whole 
particle group 

w  inertia factor 

1c  study factor 

2c  study factor 

kR  measured noise covariance 

tz  observation information 

tpredz  predictive information 
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